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1. Introduction

The study of black hole thermodynamics has played a central role in the development

of our current notions of holography in gravity. In this line of thinking, black holes are

viewed as thermodynamic objects at equilibrium with a temperature and an entropy. A

simple analysis of this thermodynamic system leads to the remarkable Bekenstein-Hawking

formula for the black hole entropy. This formula relates the entropy of the black hole to the

area of its horizon and it suggests that the microscopic degrees of freedom of the black hole

can be described by a “dual” quantum mechanics living on the horizon. This is further

supported by the discovery of AdS/CFT dualities [1] that relate gravity on AdS spaces

and gauge theories living on the AdS boundary. These observations drastically simplify

the study of black hole physics, since the geometry of the horizon is typically much simpler

than that of the full solution. Even in theories with scalar fields and a large number of

moduli – asymptotic values of massless scalars at infinity –, scalars are attracted at the

black hole horizon to special values and the full geometry is entirely determined in terms

of the black hole charges. This is referred as the attractor mechanism [2 – 5]. Originally

discussed in the context of N = 2 black holes the attractor mechanism has been recently

extended in many directions, including non-supersymmetric and higher derivative gravity

theories [6 – 19]. The results show that the attractor mechanism is a universal issue of any

gravity theory.
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In [20], A. Sen introduced a unifying formalism, the entropy formalism, that describes

the attractor equations and black hole entropy in a general non-supersymmetric and higher

derivative gravity theory. In this formalism, the near horizon geometry is determined by

extremizing a single function F , the entropy function. The entropy of the black hole is given

by the value of F at the extremum. The function F is defined by the Legendre transform

with respect to the black hole charges of the gravity action evaluated at the horizon. More

precisely, the gravity action is first evaluated at a trial background geometry with volumes

and scalar/gauge field profiles parametrized by a finite number of parameters. These

parameters are then determined by extremizing the entropy function F . The formalism

has been successfully applied to the study of general non-supersymmetric asymptotically

flat black holes in various supergravity settings [21 – 32].

The aim of this paper is to extend this analysis to the study of asymptotically AdS

black holes in gauged supergravities. According to holography [1] the entropy of black

holes in AdS spaces is related to the free energy of the dual gauge theory living on the

AdS boundary, see [33 – 38]. To pursue the study of these holographic correspondences

a detailed knowledge of the black hole near horizon data is required. To derive explicit

formulas for the attractor geometry and for the entropy of AdS black holes is one of the

main motivations of the present work.

Black holes in gauged supergravities are different from those in Poincaré supergravities

in many respects. First, in the gauged theory the asymptotic values of the scalar fields

at infinity are typically fixed at the minimum of a scalar potential. The moduli space is

therefore reduced and often empty. Still once charges are placed on AdSd, even scalars fixed

at infinity flow at the horizon to a different fixpoint specified completely by the black hole

charges. I.e. the attractor mechanism now describes a flow between two fixpoint geometries.

Second, it is well known that asymptotically AdS black hole solutions with regular horizons

are always non-supersymmetric unless a non-trivial angular momentum is turned on. This

is very different from the Minkowski case where BPS static solutions are quite common. Our

analysis here explores both non-supersymmetric static and rotating black hole solutions.

We apply the entropy formalism to non-supersymmetric black holes with near horizon

geometry AdS2 × Sd−2 in d = 4, 51. Black holes with these type of horizons have always

zero temparature (with coinciding inner and outer horizons) but they are in general non-

supersymmetric. For concreteness we focus on the U(1)4 and U(1)3 gauged supergravities

in d = 4 and d = 5, respectively. These theories can be embedded into the maximal gauged

supergravities with gauge groups SO(8) and SO(6), respectively, following from compact-

ifications of M-theory and type IIB theory on AdS4 × S7 and AdS5 × S5, respectively.

Black holes in these gauged supergravities have been extensively studied and classified in

full generality in the literature [39 – 50] (see [51] for a review and a list of references). In

the case of Einstein gravity, the solutions derived here via the entropy formalism follow

from these general solutions by taking the zero temperature limit. Our focus here is on the

near horizon geometry and black hole entropy.

1More precisely, in the case of rotating black holes the horizons are described by a “squashed AdS2 ×

S
d−2” rather than a tensor product geometry.
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We test the entropy formalism in a number of examples, including static/rotating black

holes with or without supersymmetry in Einstein as well as Gauss-Bonnet gravity. In

each case we show that the attractor geometry follows from extremization of the entropy

function. In the case of Einstein gravity the entropy function output will be shown in

agreement with the Bekenstein-Hawking formula as expected.

The entropy formalism is particularly efficient in the study of black holes in higher

derivative gravity. Higher derivative corrections to black hole entropies in rigid supergrav-

ities were first studied in [52 – 55]. Higher derivative corrections to asymptotically AdS

black holes in Gauss-Bonnet gravity were studied in [56]. More recently in [57] the authors

consider several examples of higher derivative terms and derive the first corrections to the

Schwarzschild AdS black holes. Here we consider the Einstein-Maxwell system in the pres-

ence of a Gauss-Bonnet term and derive exact expressions for the near horizon geometry

and the black hole entropy.

The paper is organized as follows: In sections 2 and 3 we consider non-rotating asymp-

totically AdS black holes in U(1)4 and U(1)3 gauged supergravities in d = 4 and d = 5,

respectively. In section 4 we apply the entropy formalism to rotating black holes in d = 5

gauged supergravity. The study of higher derivative corrections is sketched in section 5

for the Gauss-Bonnet type of interactions in the Maxwell-Einstein system in d = 4, 5 di-

mensions. In Section 6 we summarize our results and draw some conclusions. Appendix A

contains a discussion on the normalization of the physical charges used in the main text.

Appendix B presents the link between our AdS2 × Sd−2 solutions and zero temperature

limits of the general black hole solutions.

2. AdS4 static black holes

We start by considering U(1)4 gauged supergravity in four dimensions. This theory follows

from a truncation of the maximal N = 8, SO(8) gauged supergravity [58] down to the

Cartan subgroup of SO(8). The bosonic action can be written as [41]:

S =
1

16πG4

∫

d4x
√−g

[

R − 1
4X2

I F I
µνFµνI − 1

2 X−2
I ∂µXI ∂µXI − V

]

, (2.1)

with I = 1, . . . , 4, and

F I
µν = 2∂[µAI

ν] , V = −4 g2
∑

I<J

XI XJ , X1X2X3X4 = 1 . (2.2)

The equations of motion derived from this lagrangian are:

Rµν − 1
2X2

I F I
µσF I

ν
σ − 1

2X−2
I ∂µXI∂νXJ − 1

2gµν

(

R − 1
4X2

I F I2 − 1
2 (X−1

I ∂XI)
2 − V

)

= 0 ,

δ

δXI

(

1
4 X2

I F I2 + 1
2 (X−1

I ∂XI)
2 + V

)

= 0 ,

∂µ(
√−g X2

I FµνI) = 0 . (2.3)

– 3 –
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We look for non-rotating black hole solutions with AdS2 × S2 near horizon geometry

ds2 = v1

(

− r2 dt2 +
dr2

r2

)

+ v2 dΩ2 ,

XI = uI , AI = −eI r dt , F I
0r = eI ,

dΩ2 = (dθ2 + sin2 θ dφ2) 0 ≤ θ ≤ π 0 ≤ φ < 2π , (2.4)

with constants uI , eI , va, and u4 = 1/(u1u2u3).

The attractor equations determining the constants uI , va, eI at the black hole horizon

are efficiently described by the so called entropy formalism [20]. One starts by evaluating

the supergravity action (integrated on the S2 horizon) in the background (2.4):

f(~e,~v, ~u) ≡
∫

dθdφ
√−gL(~e,~v, ~u) , (2.5)

with L(~e,~v, ~u) the Lagrangian density evaluated on the ansatz (2.4). The entropy function

F (~q,~e,~v, ~u) is then defined as the Legendre transform of f with respect to the charges eI ,

i.e.

F (~q,~e,~v, ~u) ≡ 2π
[

eIq
I − f(~e,~v, ~u)

]

= 2π
[

eIq
I − v1v2

4G4

(

− 2

v1
+

2

v2
+

4
∑

I=1

u2
Ie

2
I

2v2
1

+ 4g2
4

∑

I<J

uIuJ

)]

. (2.6)

The near horizon geometry can be found by extremizing the entropy function F (~q,~e,~v, ~u)

wity respect to ~e,~v, and ~u:

∂F

∂va
=

∂F

∂uI
=

∂F

∂eI
= 0 . (2.7)

The first two equations ensure that the metric and the scalar field equations of motion are

satisfied, while the last equation defines the black hole electric charges qI

qI =
δ

δeI
f(~e,~v, ~u) =

v2

4G4 v1
u2

IeI = − 1

16πG4

∫

S2

X2
I ∗ F I . (2.8)

In the following we will take G4 = 1
8 in such a way that the charges qI are normalized

to be integers. This normalization is determined in Appendix A by matching the physical

charge units here with those coming from string theory brane setups. The G4 dependence

can be restored by the rescaling (A.6) of the physical charges qI .

Evaluating the entropy function F at the extremum (~e0(~q), ~v0(~q), ~u0(~q)) one finds the

entropy of the corresponding black hole solution as a function of the electric charges ~q:

SBH(~q) = F (~q,~e0(~q), ~v0(~q), ~u0(~q)) . (2.9)

In practice, the relations (2.8) are highly nonlinear and generically hard to invert, therefore

we will often choose to give an implicit parametrization of the black hole solution, its

entropy, and the electric charges qI in terms of u1,2,3 and v2 rather than expressing the

entropy directly in terms of the four physical charges qI .
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It is important to stress that the entropy function formalism applies to (in general

non-supersymmetric) higher derivative Lagrangians that depend only on the Riemann and

the stress energy tensor but not on their covariant derivatives. In this section we con-

sider Einstein gravity, while higher derivative corrections to black hole entropies will be

considered in section 5.

2.1 The solution

As we mentioned in our preliminary discussion, it is often easier to solve equations (2.7), 2.8

implicitly in terms of a set of independent parameters rather than in terms of the four

charges qI . We choose parameters µI to parametrize the fixed value scalars u1,2,3 and the

sphere volume v2:

uI =
µI

(µ1µ2µ3µ4)1/4
, v2 = 1

4

√
µ1µ2µ3µ4 , (2.10)

Plugging (2.10) into (2.7) and solving for the remaining variables, one finds the general

solution:

v1 =
1
4

√
µ1µ2µ3µ4

1 + g2
∑

J<K µJµK
, eI =

√

µ1µ2µ3µ4 (1 + g2
∑

I 6=J<K 6=I µJµK)

2µI (1 + g2
∑

J<K µJµK)
,

qI = µI

√

1 + g2
∑

I 6=J<K 6=I µJµK . (2.11)

It is easy to check that the equations of motion (2.3) are satisfied by (2.4), (2.10), (2.11).

Plugging this into the entropy function (2.6) yields for the black hole entropy

SBH(q) = 2π
√

µ1µ2µ3µ4 =
πv2

G4
=

1

4G4
Ahor , (2.12)

in agreement with the Bekenstein-Hawking formula.

In order to express the entropy directly in terms of the electric charges qI , one has to

invert the last equation in (2.11). In lowest orders of the gauge coupling this gives rise to

the expansion

µI = qI
(

1 − 1
2g2 ∂Iβ3 + 1

8g4
(

∂I (3β2β3 + β1β4) − 2qI ∂2
I (β2β3) + 4β4

)

+ . . .
)

, (2.13)

in terms of the symmetric polynomials

β1 =
∑

I qI , β2 =
∑

I<J qIqJ , β3 =
∑

I<J<K qIqJqK , β4 = q1q2q3q4 ,

and with ∂I = ∂
∂qI . For the entropy this leads to the expansion

SBH = 2π
√

β4

(

1 − 1
2 g2 β2 + 1

8 g4 (3β2
2 + 2β1β3 + 4β4) (2.14)

− 1
16 g6 (5β3

2 + 9β1β2β3 + β2
3 + 5β2

1β4 + 20β2β4) + . . .
)

.

The expansion drastically simplifies in two particular cases:

– 5 –
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Ungauged theory. At g = 0 one finds qI = µI leading to:

v1 = v2 = 1
4

√
q1q2q3q4 , uI =

qI

(q1q2q3q4)1/4
, eI =

1

2qI

√
q1q2q3q4 , (2.15)

and one recovers the known result

SBH(~q) = 2π
√

q1q2q3q4 , (2.16)

for the entropy in terms of the physical charges.

Equal charges qI = q. In the case of equal charges, the last equation in 2.11 can be

explicitly solved for µ and one obtains the explicit solution

v1 =

√

1 + 12g2q2 − 1

24g2
√

1 + 12g2q2
, v2 =

√

1 + 12g2q2 − 1

24g2
, uI = 1 ,

eI =
q

2
√

1 + 12g2q2
, (2.17)

and the black hole entropy

SBH(q) =
π (

√

1 + 12 q2 g2 − 1)

3 g2
, (2.18)

expressed directly in terms of the electric charges q.

3. AdS5 static black holes

Next we consider the U(1)3 gauged supergravity in d = 5 dimensions. This theory can be

obtained as a truncation of the maximal N = 8, SO(6) gauged supergravity [59] down to

the U(1)3 Cartan subgroup of SO(6). The bosonic action can be written as

S =
1

16πG5

∫

d5x
√−g

[

R − 1
4X2

I F I
µνFµνI − 1

2 X−2
I ∂µXI ∂µXI − V

+ 1
24ωµνσρλ |εIJK |F I

µν F J
σρ AK

λ

]

, (3.1)

with I = 1, 2, 3, ωtrψθφ = −(
√−g)−1, and

F I
µν = 2∂[µAI

ν] , V = −4 g2
3

∑

I=1

XI , X1X2X3 = 1 . (3.2)

The equations of motion derived from this Lagrangian are:

Rµν − 1
2 X2

I F I
µσ F I

ν
σ − 1

2X−2
I ∂µXI∂νXI − 1

2gµν

(

R − 1
4X2

I F I2 − 1
2(X−1

I ∂XI)
2 − V

)

= 0 ,

δ

δXI
(1
4X2

I F I2 + 1
2 (X−1

I ∂XI)
2 + V ) = 0 ,

1√−g
∂µ(

√−g X2
I FµλI) + 1

8 |εIJK |ωµνσρλ F J
µν FK

σρ = 0 . (3.3)

– 6 –
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We search for non-rotating black holes with near horizon AdS2 × S3 geometries

ds2 = v1

(

− r2 dt2 +
dr2

r2

)

+ v2dΩ3 ,

XI = uI , AI = − eI r dt , F I
0r = eI , (3.4)

dΩ3 = 1
4

[

dθ2 + dψ2 + dφ2 + 2dφ dψ cos θ
]

, 0 ≤ ψ ≤ 2π , 0 ≤ φ ≤ 4π , 0 ≤ θ ≤ π ,

with constants uI , eI , va, and u3 = 1/(u1u2).

As before we denote by f(~e,~v, ~u), the supergravity action evaluated on the back-

ground (3.4) and integrated over the three-sphere:

f(~e,~v, ~u) ≡
∫

dθdφ dψ
√−gL(~e,~v, ~u) . (3.5)

The entropy function F (~q,~e,~v, ~u) is again defined as the Legendre transform of f with

respect to the charges eI , i.e.

F (~q,~e,~v, ~u) ≡ 2π
[

eIq
I − f(~e,~v, ~u)

]

= 2π
[

eIq
I − π

8G5
v1v

3

2

2

(

− 2

v1
+

6

v2
+

∑

I

u2
Ie

2
I

2v2
1

+ 4g2
∑

I

uI

)]

. (3.6)

Note that the Chern-Simons term does not contribute to the action in the near horizon

geometry (3.4). The near horizon geometry is again found by extremizing F :

∂F

∂eI
=

∂F

∂va
=

∂F

∂uI
= 0 . (3.7)

The first equation defines the electric charges qI as

qI =
δ

δeI
f(~e,~v, ~u) =

π v
3

2

2

8G5 v1
u2

IeI = − 1

16πG5

∫

S3

X2
I ∗ F I . (3.8)

In the following we will take G5 = π
4 in such a way that the charges qI are normalized to

be integers. This normalization is justified in Appendix A. The G5 dependence can be

restored by the rescaling (A.11) of the physical charges qI .

Evaluating the entropy function at the minimum (~e0(~q), ~v0(~q), ~u0(~q)) one finds the

entropy of the corresponding black hole solution as a function of the electric charges ~q.

SBH(~q) = F (~q,~e0(~q), ~v0(~q), ~u0(~q)) . (3.9)

3.1 The solution

In analogy to the four-dimensional case above we introduce three independent parameters

µI to parametrize u1,2 and v2. The general solution of (3.7) can then be written as

uI =
µI

(µ1µ2µ3)1/3
, v2 = (µ1µ2µ3)

1/3 ,

v1 =
(µ1µ2µ3)

1/3

4(1 + g2
∑

J µJ)
, eI =

√

µ1µ2µ3(1 + g2
∑

J 6=I µJ)

2µI(1 + g2
∑

J µJ)
,

qI = µI

√

1 + g2
∑

J 6=IµJ . (3.10)

– 7 –
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It is easy to check that equations of motion (3.3) are satisfied by (3.4), (3.10). With this

solution we obtain from (3.6) for the entropy of the black hole

SBH = 2π
√

µ1µ2µ3 =
π2v

3

2

2

2G5
=

1

4G5
Ahor , (3.11)

again in agreement with the Bekenstein-Hawking formula.

In lowest order of the gauge coupling we obtain the following expansion

µI = qI
(

1 − 1
2 g2 ∂Iβ2 + 1

8 g4 (∂I(3β1β2 + 5β3) − 4β2) + . . .
)

, (3.12)

in terms of the symmetric polynomials

β1 =
∑

I

qI , β2 =
∑

I<J

qIqJ , β3 = q1q2q3 .

For the entropy this implies

SBH = 2π
√

β3

(

1 − 1
2 g2 β1 + 1

8 g4 (3β2
1 + 2β2) − 1

16 g6 (5β3
1 + 9β1β2 + 5β3)

+ 1
128 g8 (35β4

1 + 116β2
1β2 + 20β2

2 + 136β1β3) + . . .
)

. (3.13)

Again drastic simplifications occur for g = 0 and for all charges equal qI = q:

Ungauged theory. At g = 0 we have µI = qI and the solution takes the explicit form

v2 = 4v1 = (q1q2q3)
1

3 , uI =
qI

(q1q2q3)
1

3

, eI =
1

2qI

√
q1q2q3 , (3.14)

and the black hole entropy is simply given as

SBH = 2π
√

q1q2q3 . (3.15)

Equal charges qI = q. In this case the above formulas reduce to

v1 =
µ

4(1 + 3g2 µ)
, v2 = µ , uI = 1 ,

eI =

√

µ + 2g2 µ2

2 (1 + 3g2 µ)
, q = µ

√

1 + 2g2 µ , (3.16)

with black hole entropy

SBH = 2π µ3/2 =
π2v

3

2

2

2G5
=

1

4G5
Ahor , (3.17)

expressed in terms of a single parameter µ. If instead we choose to express SBH directly in

terms of the charges q we have to invert the last equation in (3.16). A closed form for the

entropy in this case is given by the more involved expression

SBH =
2
√

3 q3/2

√

sin φ +
√

3 cos φ + (2/3) sin 3φ
, φ = 1

3 arcsin(3
√

3 q g2) . (3.18)
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4. Rotating black holes in AdS5

Finally we consider rotating black holes with squashed AdS2 × S3 near horizon geometry2

ds2 = v1

(

− r dt2 +
dr2

r2

)

+ 1
4v2

[

σ2
1 + σ2

2 + v3(σ3 − α r dt)2
]

,

XI = uI ,

AI = −eI r dt + pI σ3 , F I
0r = eI , F I

ψθ = pI sin θ ,

σ2
1 + σ2

2 = dθ2 + sin2 θdψ2 , σ3 = dφ + cos θdψ , (4.1)

with constants uI , eI , pI , va, and α. The constants α, v3 and pI parametrize the breaking

from the SO(4) isometry of the non-rotating solution down to SU(2) × U(1) once the

angular momentum is turned on.

The entropy function is then given by [29]

F (~q,~e,~v, ~u) ≡ 2π
(

αJ + eI q̂I − f(eI , α, va, uI)
)

= 2π
[

αJ + eI q̂
I +

π

3G5
|εIJK |eIpJpK (4.2)

−πv1v
3

2

2 v
1

2

3

8G5

(

− 2

v1
+

8 − 2v3

v2
+

v2v3α
2

8v2
1

+
∑

I

e2
Iu

2
I

2v2
1

− 8
∑

I

p2
Iu

2
I

v2
2

+ 4g2
∑

I

uI

)]

.

Notice that now also the Chern-Simons term contributes to the action. The fact that

the Chern-Simons term depends explicitly on the potential Aµ rather than on the field

strength Fµν requires a slight modification of Sen’s algorithm. First, the presence of the

Chern-Simons term modifies the definition of the electric charge qI . This can be easily

implemented in the entropy function by the redefinition qI = q̂I + cI with cI chosen such

that qI are conserved quantities. Luckily the cI induced by the Chern-Simons term are

independent of eI , uI , and va such that this modification will modify neither the attractor

equations nor the black hole entropy. Second, due to the presence of the Chern-Simons

term, the equations of motion for AI
φ

0 =
1√−g

∂µ(
√−g X2

I FµφI) + 1
8 |εIJK |ωµλσρφ F J

µλ FK
σρ ,

=
α u2

I eI

v2
1

− 16u2
I pI

v2
2

− 8

v1 v
3

2

2 v
1

2

3

|εIJK | eJ pK , (4.3)

are no longer automatically satisfied as a mere consequence of the extremization equations

∂F

∂α
=

∂F

∂eI
=

∂F

∂uI
=

∂F

∂va
= 0 . (4.4)

Rather, equations 4.3 have to be considered in addition to the extremization equations 4.4

and determine the fluxes pI in the ansatz (4.1).

2Squashing here refers to the full product, still the metric has the AdS2 isometries, see [60].
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The resulting solution describes the near horizon geometry of a black hole with electric

charges qI and angular momenta J given by

qI =
δ

δeI
f(~e,~v, ~u) − π

6G5
|εIJK | pJpK =

π v
3

2

2 v
1

2

3 u2
I

8G5 v1
eI −

π

2G5
|εIJK | pJpK

= − 1

16πG5

∫

S3

(X2
I ∗ F I + 1

2 |εIJK |F J ∧ AK) ,

J =
δ

δα
f(~e,~v, ~u) =

π v
5

2

2 v
3

2

3

32G5 v1
α =

1

16πG5

∫

S3

∗dK . (4.5)

Here K = ∂
∂φ denotes the Killing vector associated with the angular rotation. The shift

cI = − π
6G5

|εIJK | pJpK has been chosen in such a way that the integrand in the definition

of qI is closed on the mass shell

d(X2
I ∗ F I) + 1

2 |εIJK |F J ∧ FK = 0 . (4.6)

This allow us to identify qI with the conserved charge3. As we explained before neither

the solution nor the entropy depends on the cI ’s. In the rest of this section we describe

the different subcases for which we can give explicit solutions to (4.3), (4.4).

4.1 BPS black holes

Let us first discuss the case of extremal BPS rotating black holes. These black hole solutions

have been found in [44].

In this case, we can give the general solution of (4.3), 4.4 again in terms of three

independent parameters µI and their symmetric polynomials

γ1 =
∑

I

µI , γ2 =
∑

I<J

µIµJ , γ3 = µ1µ2µ3 ,

as follows

uI =
µI

γ
1/3
3

, v1 =
γ

1/3
3

4(1 + g2 γ1)
, v2 = γ

1/3
3 ,

v3 = 1 + g2 γ1 −
g2 γ2

2

4γ3
, α =

g γ2

(1 + g2 γ1)
√

4γ3 (1 + g2 γ1) − g2 γ2
2

,

eI =

√

4γ3 (1 + g2 γ1) − g2 γ2
2

4µI (1 + g2 γ1)
, pI = 1

4 g (γ1 − µI) −
g γ3

4µ2
I

,

qI = µI + 1
2 g2 µI(γ1 − µI) −

g2 γ3

2µI
J =

g γ2 (4γ3 (1 + g2 γ1) − g2 γ2
2)

16γ3
(4.7)

3J.F.M. thanks L.Alvarez-Gaume and C.N. Pope for useful discussions on this point.
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Plugging this into 4.2 we obtain for the entropy

SBH = 2π
√

γ3 (1 + g2 γ1) − 1
4 g2 γ2

2 =
π2v

3

2

2 v
1

2

3

2G5
=

1

4G5
Ahor , (4.8)

reproducing the result of [44]. In order to compare the results it is helpful to note that the

parametrization of the squashed AdS2 × S3 near horizon geometry given in [44]

ds2
BPS = −f2 dT 2 + 2f2 w dTσ3 + f−1 b−1 dR2 + 1

4 R2 f−1 (σ2
1 + σ2

2 + c σ2
3) ,

f = R2γ
− 1

3

3 , w = − γ2g

4R2
, b = 1 + g2γ1 , c = 1 + g2γ1 −

g2γ2
2

4γ3
, (4.9)

translates into the standard form (4.1) with

r = R2 , dt =
2 b√
γ3 c

dT , v1 =
γ

1

3

3

4b
, v2 = γ

− 1

3

3 , v3 = c , α =
γ2 g

2 b
√

γ3 c
.

in agreement with (4.7).

4.2 Non-extremal black holes

These considerations can be extended to non-extremal black holes. For simplicity we focus

on the case of equal charges qI = q. The general solution of equations (4.3), 4.4 can then

be expressed in terms of two independent parameters µ, ω > 1 as

uI = 1 , v1 =
µ

4(1 + 3g2µ)
, v2 = µ , v3 = µ−3∆2

s , (4.10)

eI =
∆s

2µ(ω − 1)(1 + 3g2µ)
, pI =

∆α

2µ(1 + w)
, α =

∆α

∆s(1 + 3g2µ)
,

J = 1
2 µ−3 ∆α∆2

s , qI =
2µ

ω
+ 2 g2 µ2 (ω − 1)

ω2
,

with

∆α =
µ(ω + 1)

ω2

√

2µω(ω − 2) + 4g2µ2(ω2 − 2ω + 1) ,

∆s =
µ(ω − 1)

ω2

√

2µω(ω + 2) + 2g2µ2(ω2 + 2ω − 2) . (4.11)

Plugging this into 4.2, we find for the entropy

SBH = 2π∆s =
π2v

3

2

2 v
1

2

3

2G5
=

1

4G5
Ahor . (4.12)

It is interesting to note that although for a generic choice of the parameters µ, ω the

black hole solution found here is non-supersymmetric, the charges can be chosen in such a

way that the BPS bound is saturated. More precisely, for the particular value ω = 2 the
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formulas obtained here reduce to

uI = 1 , eI =

√
µ
√

4 + 3g2 µ

4 (1 + 3g2 µ)
, pI = 1

4 g µ , qI = µ + 1
2 g2 µ2 ,

v1 =
µ

4(1 + 3g2 µ)
, v2 = µ , v3 = 1 + 3

4 g2 µ , α =
3g

√
µ

(1 + 3g2 µ)
√

4 + 3g2µ)
,

J =
3

16
g µ2 (4 + 3g2µ) , SBH = 2π µ3/2

√

1 + 3
4 g2 µ , (4.13)

that agrees with the general BPS solution 4.7 after taking all charges equal µi = µ.

Another interesting limit of the solution (4.10) is the unrotating case studied in last

section. This is given by setting

ω = 1 +
1

√

1 + 2g2µ
. (4.14)

Indeed it is straightforward to check that at this value the above formulas reduce to (3.16).

5. Higher derivative terms

Finally we consider asymptotically Anti-de Sitter black hole horizons in higher derivative

gravity. In contrast to the case of Poincaré supergravities, higher derivative couplings in

gauged supergravities were rarely studied in the string literature. Awaiting more realistic

Lagrangians here we illustrate the entropy formalism in an archetype toy example: the

Einstein-Maxwell system in presence of a Gauss-Bonnet term and a cosmological constant

S =
1

16πGd

∫

ddx
√−g

(

R − 1
4F 2 + Λ + aLGB

)

, (5.1)

with the Gauss-Bonnet term

LGB = RµνσρR
µνσρ − 4RµνRµν + R2 . (5.2)

The parameter a measures the deviation from Einstein gravity and it depends on the

particular string model under consideration.4

The equations of motion following from (5.1) are:

Rµν − 1
2FµσFν

σ + a
δLGB

δgµν
− 1

2gµν

(

R − 1
4F 2 + Λ + aLGB

)

= 0 ,

∂µ(
√−gFµν) = 0 , (5.3)

with
δLGB

δgµν
= 2(Rµσρδ Rν

σρδ − 2Rρσ Rµρνσ − 2Rσ
µ Rνσ + R Rµν) , (5.4)

4See [61 – 63] for an analysis of the boundary terms needed by the regularization of the action for

Einstein-Gauss-Bonnet-AdS gravity.

– 12 –



J
H
E
P
1
0
(
2
0
0
6
)
0
7
4

up to total derivatives. We look for AdS2 × Sd−2 near horizon geometries:

ds2 = v1

(

−r2 dt2 +
dr2

r2

)

+ v2 dΩd−2 , F0r = e . (5.5)

The extremization equations of the entropy function can now be explicitly solved in the

different space-time dimensions.

d=4. In four dimensions, evaluating the entropy function for this system yields

F (q, e, ~v) ≡ 2π

[

eq − v1v2

4G4

(

− 2

v1
+

2

v2
− 8a

v1v2
+

e2

2v2
1

+ Λ

)]

. (5.6)

The extremum of F (q, e, ~v) (for a fixed q) can be conveniently parametrized in terms of v2:

v1 =
v2

1 + v2Λ
, e =

√

2v2(2 + v2Λ)

(1 + v2Λ)
, q =

1

2G4

√

v2(1 + 1
2v2Λ) . (5.7)

Plugging (5.7) into the entropy function (5.6) one finds the black hole entropy

SBH =
π

G4
(v2 + 4a) . (5.8)

The a-term gives the deviation from the area law due to the Gauss-Bonnet term. Interest-

ingly, the presence of the Gauss-Bonnet term in d = 4 does not modify the near horizon

solution but only the black hole entropy. This is consistent with the fact that in d = 4 the

a-dependent term in the equations of motion (5.3) cancels once evaluated on AdS2 × S2.

In d = 5 this will be different as we shall see.

d=5. In five dimensions the entropy function is given by

F (q, e, ~v) ≡ 2π



eq − πv1v
3

2

2

8G5

(

− 2

v1
+

6

v2
− 24a

v1v2
+

e2

2v2
1

+ Λ

)



 . (5.9)

The extremum of F (q, e, ~v) (for a fixed q) can be conveniently parametrized in terms of

the sphere radius v2:

v1 =
v2 + 4a

4 − v2Λ
, e =

(

v2 + 4a

4 − v2Λ

)

√

12 v−1
2 − 2Λ , q =

πv2

4G5

√

3 − 1
2v2Λ . (5.10)

Plugging (5.10) into the entropy function (5.9) one finds the black hole entropy

SBH =
π2v

1

2

2

2G5
(v2 + 12a) . (5.11)

The a-dependent term represents the deviation from the area law due to the Gauss-Bonnet

term.

– 13 –



J
H
E
P
1
0
(
2
0
0
6
)
0
7
4

6. Conclusions

In this paper we applied the entropy formalism to the case of gauged supergravities which

admit asymptotically AdS electrically charged black holes with AdS2 × Sd−2 horizons.

Using Sen’s algorithm we have determined the fixed near-horizon geometries for four and

five-dimensional static black holes, for rotating five-dimensional black holes and finally for

AdS black holes with higher derivative corrections of Gauss-Bonnet type. In each case we

find horizons with fixed scalars, AdS and sphere radii, determined entirely in terms of the

gauge coupling, the black hole electric charges and the angular momentum.

The explicit dependence on the gauge potential via the Chern-Simons term in the

five-dimensional gauged supergravity requires a slight modification of the entropy function

algorithm. We have illustrated this in the case of five-dimensional rotating black holes.

Once the black hole rotates, magnetic fluxes pI should be turned on and the Chern-Simons

term starts contributing to the action. The inclusion of this term leads to a redefinition of

the black hole electric charge qI → qI + cI with cI depending only on the magnetic fluxes

and not on the metric or scalar fields. This implies in particular that neither the attractor

equations nor the entropy depends on cI and therefore cI can be adjusted to account for

the Chern-Simons correction to the electric charge. The fluxes pI are determined by an

extra constraint coming from the gauge field equations of motion to be imposed in addition

to the extremization conditions of the entropy function. Nicely, this leads again to a family

of black hole near horizon solutions parametrized only by the black hole electric charges

and the angular momentum.

In the case of Einstein gravity, the near horizon geometries derived here can be recov-

ered by considering the zero temperature limit of the general black hole solutions [39 – 50].

In this limit one finds a single horizon with AdS2 ×Sd−2 topology. We stress the fact that

in the gauged theory, zero temperature black holes are not necessarily supersymmetric.

A non-BPS black hole solution is known to be classified by its charges (electric charge,

angular momentum, etc.) and its mass. The condition of zero temperature relates the

black hole mass to its charges. This implies that there is a unique black hole solution with

AdS2 × Sd−2 horizon for a given choice of the charges. This is precisely the result coming

from extremizing the entropy function. The precise matching between our solutions and

the T → 0 limit of the general non-extremal black hole solutions is shown explicitly in

appendix B for static black holes and in section 4.1 for the five-dimensional BPS case [44].

It is tempting to speculate about the generalization of the expressions for the en-

tropy (2.14), (3.13) to the full N = 8 theories. For the ungauged case g = 0 it is well

known that the first term in the expansions is replaced by the quartic and cubic invariants

of the global symmetry groups E7 and E6, respectively [64]. The gauging of the theories

is most conveniently described in terms of an embedding tensor which parametrizes the

deformation in order g and comes in a particular representation of the global symmetry

groups [65]. This suggests that e.g. the second term in the expansion (2.14) will be re-

placed by an E7 invariant built from six charges and two embedding tensors. Indeed, there

is a single nontrivial E7 invariant combination of these representations which might thus

generalize the expansion (2.14) to lowest orders.
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It would be nice to explore the implications of our results to gauge/gravity holographic cor-

respondences. In particular, the AdS5 entropy formula provide explicit predictions on the

partition function of gauge invariant operators in N = 4 SYM. In addition the AdS2×Sd−2

solutions found here can be used as starting points of new holographic relations between

quantum mechanical systems living on the AdS2 boundary and the gravity physics near

the horizon.

We hope to come back to some of these issues in the near future.
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A. Physical charge units

In this appendix we explain the normalization of physical charges adopted in the text.

Electric charge units do not depend on the coupling constant g, therefore we can restrict

ourselves to the ungauged limit g = 0. The five and four-dimensional supergravities stud-

ied here can be embedded into compactifications of type II supergravities on T 5 and T 6

respectively. The black hole solutions in this limit reduce to the well known 3- and 4-charge

black hole solutions of the maximal supergravities. Here we normalize our charges in such

a way as to match the electric charge units coming from black holes built out of branes in

string theory. The formulas in this appendix follow the notations and conventions in [66].

We refer the reader to this reference for further details and a complete list of references on

the subject.

Newton constant.

Gd =
G10

(2π)10−dV10−d
, G10 = 8π6g2

s`
8
s , (A.1)

with string length `s =
√

α′, string coupling constant gs, and the volume V10−d of the

compactification manifold.

4-charge black hole. The Einstein metric of a 4-charge black hole in d = 4 dimensions

can be written as

ds2 = −(H1H2H3H4)
− 1

2 dT 2 + (H1H2H3H4)
1

2 (dr2 + r2dΩ2) ,

Hi = 1 +
ciNi

r
, (A.2)

with integers Ni counting the number of brane constituents and some constants ci para-

metrizing the brane tension. In the near horizon r → 0, the black hole geometry becomes

ds2 = −(cN1N2N3N4)
− 1

2 r2 dT 2 + (cN1N2N3N4)
1

2

dr2

r2
+ (cN1N2N3N4)

1

2 dΩ2 , (A.3)
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with

c = c1c2c3c4 =
g4
s`

16
s

16V 2
6

= 4G2
4 . (A.4)

Notice that although ci depends on the type of brane constituent and on the string model,

c is a U -duality invariant quantity that depends only on G4.

After a rescaling of dT the metric (A.3) can be put into our standard AdS2 × S2

form (2.4) with

v1 = v2 =
√

cN1N2N3N4 = 2G4

√

N1N2N3N4 . (A.5)

Taking G4 = 1
8 and comparing (A.5) with (2.15), one finds agreement with the identification

qi = Ni, i.e. the qi are integers. It is important to note that G4 can be reabsorbed by a

simultaneous rescaling of qi and SBH. Therefore the G4 dependence in the main text can

be restored by sending

qi → (8G4) qi , SBH → (8G4)SBH . (A.6)

Clearly, the qi’s defined in this way will not be integers.

3-charge black hole. The Einstein metric of a 3-charge black hole in d = 5 dimensions

can be written as

ds2 = −(H1H2H3)
− 2

3 dT 2 + (H1H2H3)
1

3 (dR2 + R2dΩ3) ,

Hi = 1 +
ciNi

R2
. (A.7)

In the near horizon r = R2 → 0, the black hole geometry becomes

ds2 = −(cN1N2N3)
− 1

2 r2 dT 2 + (cN1N2N3)
1

2

dr2

4r2
+ (cN1N2N3)

1

2 dΩ3 , (A.8)

with

c = c1c2c3 =
g4
s`

16
s

V 2
6

=
(4G5

π

)2
. (A.9)

Again c is a U -duality invariant quantity depending only on G5.

After a rescaling of dT the metric (A.8) can be put into the standard AdS2 × S3

form (3.4) with

v2 = 4v1 = (cN1N2N3)
1

3 =
(4G5

π

)
2

3

(N1N2N3)
1

3 . (A.10)

Taking G5 = π
4 and comparing (A.10) with (3.14), one finds agreement with the identifi-

cation qi = Ni, i.e. the qi are integers.

It is important to note that G5 can be reabsorbed by a simultaneous rescaling of qi

and SBH. Therefore the G5 dependence in the main text can be restored by sending

qi →
(4G5

π

)

qi , SBH →
(4G5

π

)

SBH . (A.11)

Clearly the qi’s defined in this way will not be integers.
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B. Black holes at T = 0

In this Appendix we show that the AdS2 × Sd−2 geometries derived in the text agree with

those coming by taking the zero temperature limit of the most general non-extremal black

hole solutions in d = 4, 5 dimensions. For simplicity we focus on the static case. We refer

the reader to [51] for details and references on the AdS black hole solutions quoted in this

Appendix.

d = 4 case. The general non-extremal and static asymptotically AdS black hole solution

of U(1)4 gauged supergravity in d = 4 can be written as5:

ds2
4 = H−2 f dt2 + H2 (f−1 dr2 + r2 dΩ2) ,

XI =
HI

H
, F I = dH−1

I coth βidt , (B.1)

with

f = 1 − m

r
+ 4 g2 r2 H4 , H4 = H1H2H3H4 , HI = 1 +

m sinh2 βi

r
. (B.2)

The parameters βi and m parametrize the electric charges and mass of the black hole. For

a generic choice of m the black hole has two horizons at r± given by the zeros of f . The

two horizons coincide when r0 = r+ = r−, i.e. when both f and its first derivative vanish

at r = r0:

f(r0) = f ′(r0) = 0 . (B.3)

Denoting

1
2µI = r0 HI(r0) , (B.4)

γ1 =
∑

I

µI , γ2 =
∑

I<J

µIµJ , γ3 =
∑

I<J<K

µIµJµK , γ4 = µ1µ2µ3µ4 ,

equations (B.3) can be solved for m and r0 in terms of µI :

m = g
√

γ4 + 1
4 g2γ2

3 , r0 = 1
2 m − 1

4 g2 γ3 . (B.5)

The temperature of the black hole is zero for this choice and the horizon geometry takes

the AdS2 × S2 form with

v1 = 1
2 H(r0)

2 f ′′(r0)
−1 =

1
4

√
γ4

1 + g2 γ2
, v2 = r2

0 H(r0)
2 = 1

4

√
γ4 , (B.6)

in precise agreement with (2.11).

5The XI ’s here are the inverse of the Xi’s used in [51]
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d = 5 case. The general non-extremal and static asymptotically AdS black hole solution

of U(1)3 gauged supergravity in d = 5 dimensions can be written as6:

ds2
4 = H−2 f dt2 + H (f−1 dr2 + r2 dΩ2) ,

XI =
HI

H
, F I = dH−1

I coth βidt , (B.7)

with

f = 1 − m

r2
+ g2 r2 H3 , H3 = H1H2H3 , HI = 1 +

m sinh2 βi

r2
. (B.8)

The parameters βi and m parametrize the electric charges and mass of the black hole. For

a generic choice of m the black hole has two horizons at r± given by the two positive zeros

of f . The two horizons coincide r0 = r± when parameters are chosen such that both f and

its first derivative vanish at the horizon:

f(r0) = f ′(r0) = 0 . (B.9)

Denoting

µI = r2
0 HI(r0) , γ1 =

∑

I

µI , γ2 =
∑

I<J

µIµJ , γ3 = µ1µ2µ3 ,

equations (B.9) can be solved for m and r0 in terms of µI :

m = g
√

4γ3 + g2γ2
2 , r2

0 = 1
2m − 1

2 g2 γ2 . (B.10)

The temperature of the black hole is zero for this choice and the horizon geometry takes

the AdS2 × S3 form with:

v1 = 1
2 r4

0 H(r0) f ′′(r0)
−1 =

1
4γ

1

3

3

1 + g2 γ1
, v2 = r2

0 H(r0) = γ
1

3

3 , (B.11)

in agreement with (3.10).
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